DEPARTMENT OF MATHEMATICS

PROGRAMME NAME: MSc MATHEMATICS

PROGRAMME OUTCOMES (PO)

PO1. Inculcate critical thinking to carry out scientific investigation objectively without being biased with preconceived notions.

PO2. Equip the student with skills to analyze problems, formulate an hypothesis, evaluate and validate results, and draw reasonable conclusions.

PO3. Prepare students for pursuing research or careers in industry in mathematical sciences and allied fields

PO4. Imbibe effective scientific and/or technical communication in both oral and writing.

PO5. Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in mathematical sciences.

PO6. Create awareness to become an enlightened citizen with commitment to deliver one's responsibilities within the scope of bestowed rights and privileges.

PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO.1. Understanding of the fundamental axioms in mathematics and capability of developing ideas based on them.

PSO.2. Inculcate mathematical reasoning.

PSO.3.Prepare and motivate students for research studies in mathematics and related fields.

PSO.4. Provide knowledge of a wide range of mathematical techniques and application of mathematical methods/tools in other scientific and engineering domains.

PSO.5. Provide advanced knowledge on topics in pure mathematics, empowering the students to pursue higher degrees at reputed academic institutions.

PSO.6. Good understanding of number theory which can be used in modern online cryptographic technologies.

PSO.7. Nurture problem solving skills, thinking, creativity through assignments, project work.

PSO.8 Assist students in preparing (personal guidance, books) for competitive exams e.g. NET, GATE, etc.

COURSE OUTCOMES				
Semester	Course	Course title	Course outcome	
	Code			
Ι	MAT1C01	Basic Abstract Algebra	 CO1. Identify and analyze different types of Algebraic structures to understand and use the fundamental results in algebra. CO2. Analyze and implement the concept of homomorphism and isomorphism between groups and rings for solving different types of problems. CO3. Applying the concept of group action and sylow - theorems. CO4. Understand the concept of finitely generated abelian groups, ideals and fields helps to explore the existing results. 	
Ι	MAT1C02	Linear Algebra	 CO1: Make better understanding linear transformation and related concepts - isomorphism, matrix of linear transformation, linear functional and the double dual of linear transformation CO2. Gives an overview of characteristic values, annihilating polynomials, invarient subspaces, diagonalization and triangulation. CO3. Enable students to understand the concepts of elementary canonical form, the rational canonical form and Jordan form. Given then an idea about inner product spaces. CO4. Students can gain the skill like modeling of problems and matrix manipulation. 	
Ι	MAT1C03	Real Analysis	 CO.1 Students achieve a good grasp of the basic concepts of real analysis. CO.2. Understand the basics of metric spaces and generalize the concepts of limits, continuous functions in metric spaces. CO.3. Apply the concepts of derivatives, Mean value theorems for vector valued functions in different fields. CO.4. Recognize the differences between bounded variation and total variation of functions. CO.5. Understand the concept rectifiable curves. 	
I	MAT1C04	Basic Topology	CO.1. Introduce the concepts of topological space and the basic definitions such as open sets, neighbourhoods, interior, exterior, closure and their axioms for defining topological spaces.CO.2. Understand the concepts of bases and Sub bases. Create new spaces from old ones.CO.3. Highlight the features of continuity, connectedness, homeomorphism, topological properties.	

Ι	MAT1C05	Differential	CO.1. Apply various power series methods to obtain series
		Equations	solution of differential equations.
		•	CO.2. Ability to handle differential equation and solve them
			under appropriate assumption.
			CO.3. Discuss various kinds of special functions indetail, their
			properties and relation.
			CO.4. Students will have working knowledge of basic application
			problems described by homogeneous linear system with constant
			coefficients.
			CO.5. Introduce Picard's theorem and enable them to solve
			approximation problems.
Π	MAT2C06	Advanced	CO1. Enable students to understand Unique Factorization Domains,
			Euclidean Domains, Gaussian Integers and Multiplicative Norms,
		abstract algebra	Introduction to Extension Fields
			CO2.Understand the concept of Algebraic Extensions, Geometric
			Constructions, Finite Fields, Automorphisms of Fields.
			CO3. Analyze the concept of Isomorphism Extension Theorem,
			Splitting Fields, Separable Extensions. Galois Theory
П		Maaayna and	CO1. Introduce the definition and monorties of laborance outer measure
11	MATZC07	wieasure and	COT: Introduce the definition and properties of fedesgue outer measure.
		Integration	CO2: Understand the concept of measurable sets ,and construction of non-
			measurable sets , measurable functions of a real variable
			CO3. Enable students to understand Riemann and lebesgue integral,
			concept of Abstract measure spaces
	MAT2C08	Advanced	CO1:Enable students to review the fundamentals of topology
		Topology	CO2: Understand the concept of compactness and relation between various
			forms of compactness
			CO3: Recognize how points of space are separated by open sets and
			understand the separation axioms
			CO4: Acquire knowledge about metrizability andhomotopy of paths
11	MAT2C09	Foundations of	CO1: Design, analyze and implement the concept of Analytic Functions,
			Complex Integration, Power Series representation of Analytic Functions
		Complex	
		analysis	Zeroes of an analytic function, Cauchy's Theorem and Integral Formula,
		unary 515	Goursat' sTheorem
			CO2: Analyze different type of Singularities Classification of singularities
			Residues, The Argument Principle, the Maximum Modulus Theorem, the
			Maximum Principle, Schwarz's Lemma .
			CO2. Understand the concert of Compositions and Composition in the
			COS. Understand the concept of Compactness and Convergence in the

			Space of Analytic functions, the Spaces of continuous functions $C(G, \Omega)$,
			Spaces of analytic functions,the Riemann Mapping Theorem, Weierstrass Factorization Theorem.
11	MAT2C10	Partial	CO1: Solving first order partial differential equation using Method of
		differential	Charpits and Jacobi. Introduce the nonlinear first order pde
		equations and	CO2: Identify and solve different types of second order pde including the solution of One dimensional Wave Equation Laplace's Equation and
			discuss Problems - The Cauchy Problem, The Dirchlet Problem ,
			Introduce integral equation.
			CO3 :Develop skills in the formulation, solution understanding and interpretation of pde Models
	MAT3C11	Number theory	CO1:Make a better understanding of divisibility and related algorithms
			CO2: Discuss the distribution of primes and introduce various arithmetical functions and related results
			CO3: Enable students to understand the definition and basic properties of congruences.
			CO4:Introduce the concept of quadratic residues and quadratic reciprocity
			law, Primitive roots, Introduce the concept of coding and cryptography
			CO5: Gives an overview of algebraic number theory
	MAT3C12	Functional	CO1: Introduce the Concept of normed linear spaces and innerproduct spaces. Bounded linear operators between these spaces
		Analysis	CO2:Make a better understanding of orthonormal sets, approximation and optimization and discuss the Projection and Riesz representation theorems CO3:Enable students to compare the differences between Banach and Hilbert Spaces
			CO4:Students achieve a good idea to show that certain spaces of functions are complete
	MAT3C13	Complex	CO1: Introduce Elliptic Functions, Simple periodic functions,
		Function Theory	Doubly periodic functions, The Riemann Zeta function and related results. CO2 : Discuss Runge's Theorem , Simple Connectedness, Mittag Lefler's Theoerem, Mondromy Theorem ,Harmonic Functions
			CO3: Understand basic Properties of harmonic functions, Sub harmonic and super harmonic functions, entire Functions, Jensen's formula
111	MAT3C14	Advanced real	CO1: Make better understanding of Sequence and series of Functions.
		Analysis	Uniform Convergence, UniformConvergence and Continuity, UniformConvergence and Integration, Uniform Convergence

		and Differentiation, Equicontinous Family of Functions,
		The Stone-Weierstrass Theorem,
		CO2: Introduce Some Special Functions and realated algorithms
		CO3 : Discuss more about Linear Transformations, Differentiation, The InverseFunction Theorem, The Implicit Function Theorem.
IV	MAT4C15 Operator theory	CO1: Introduce the concept of Spectrum of a Bounded Operator, Weak and Weak* Convergence
		CO2: Discuss about the Spaces of Bounded Linear Functionals; Reflexivity, Compact Operators on Normed Spaces, Spectrum of a Compact Operator.
		CO3: Understand the concept of Bounded Operators on Hilbert Spaces,
		Adjoints, Normal, Unitary and Self Adjoint Operators, Spectrum and
		Numerical Range, CompactSelf Adjoint Operators.
IV	MAT4C16Differential	CO1. Introduce the concept of Graphs and Levels Sets, Vector Fields, The Tangent Space, Surfaces, Vector fields on Surfaces, Orientation
	Geometry	CO2: Give an overview of the Gauss map, Geodesics, Parallel Transport
		The Weingarten Map, Curvature of Plane Curves.
		CO3: Understand the concept of arc Length and Line Integrals, Curvature of Surfaces, Parameterized Surfaces, and Local Equivalence of Surfaces and Parameterized Surfaces.
IV	MAT4D01Project work	CO1. Inculcate a taste for research in mathematics
		CO2. Develop oral and written presentation skills
IV	MAT4VOIViva –Voce	CO1.To evaluate the students perfomance apart from the Written exam
		CO 2.To check how far the students attain the various Course objective .

LIST OF ELECTIVES

Semester	Course code	Course tittle	Course outcome
IV	MAT4E02	Fourier and wavelet analysis	CO1: They are able to Construct Wavelets on Zn, the First Stage. and Construct Wavelets on Zn, the Itration Step. Introduce the concept of the Haar System, the Shannon wavelets and the Daubechies's D6 wavelets on Zn. CO2: Understand l^2 (Z), Complete Orthonormal sets in Hilbert Spaces l^2 (Z), and The Fourier transforms and convolution on l^2 (Z), First Stage Wavelets on Z, CO3: Discuss about L^2 (R) and Approximate Identities.
111	MAT3E01	Graph theory	 CO1:Discuss Ramsey's theorem, gives an overview of graph coloring, chromatic number CO2: Understand the concept of Planargraphs Dual graphs, Bridges and realated theorems . CO3: Discuss the idea of network. CO4:Developing an ability to recognize and handle those problems where a graphtheoretical Framework is useful to study